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Abstract— Existing works on prosthetic hands focus on in-
creasing dexterity by carrying out functional tasks. Achieving
specific hand movements, such as pointing the index finger,
are desired but research on generating the hand movement
itself has yet to be widely explored. In this work, we propose
a pipeline for generating hand motion from body motion via
using the Common-Rig, a kinematic rig representation for
effective motion representation, and a diffusion-based inpaint-
ing method, which has shown strengths in generalization and
stability. Common rigging is applied to a motion capture dataset
with both body and hands information, and hand motions are
generated while conditioned on the body motions of a hand-
zeroed test set. The generated results of our proposed method,
compared to two baseline methods, attain smaller fingertip
positional errors and diversity closer to that of the ground
truth. In addition, the generated motions are implemented on
a real robotic system with prosthetic hands for evaluation.

I. INTRODUCTION

The hands provide great competence to carry out various
functions in life, ranging from precision-grip and power-grip
tasks to performing delicate movements with one’s fingers.
The hand is comprised of 21 Degrees of Freedom (DoF) and
fully utilizes such a complicated structure to execute the wide
variety of functions [1]. Losing a hand can be devastating
as it greatly limits a person’s ability to perform such tasks.
Prosthetic hands, while not perfect, can offer a solution for
upper limb amputees to regain some of these abilities.

Research on prosthetic hands has focused on two main
goals: increasing functionality to mimic the dexterity of
human hands and improving hardware for better user conve-
nience [2]–[7]. This includes consideration of various grasp
tasks and objects needed for daily activities or reducing the
weight of the hand by modeling the hands as underactuated
systems [2], [7]. However, despite these efforts, 50% of uni-
lateral limb amputees and 34.4% of bilateral limb amputees,
at some point in time, have abandoned the use of upper
limb prosthetics due to the limited functionality, discomfort,
and fatigue [8]. Actions requiring delicate movements in the
distal extremities [9] or the control of individual fingers,
such as pointing the index finger, are highly desired [1],
yet research on creating the prosthetic hand movement itself
remains underexplored.
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In this work, we focus on the problem of generating hand
motions from body motions in order to effectively create
hand movements that are feasible to be applied to actual
prosthetic hands. We propose a common rigging method,
which utilizes the kinematic priors of the prosthetic hands
and the human skeleton, for the pre-processing of the dataset.
Additionally, in order to generate hand motions conditioned
on body motions, we utilize a diffusion-based inpainting
method, which has shown great strengths in generating
diverse results in the domain of images.

To be specific, the Common-Rig, which contains a rigid
body structure with pre-defined link lengths, is used to
retarget motions from a motion capture dataset that contains
both body and hand movements. From the motions of the
Common-Rig, the diffusion-based inpainting method is used
to generate hand motion from body motion and a hand
coupling method, that accounts for an underactuated system
in simulation, is applied to restrict joint movements within
the same finger. To evaluate the fidelity of the generated
hand motion, we compare the total distance of the fingertip
positions from the ground truth and the diversity of the
generated motions to two baseline models.

Our proposed method is extensively evaluated on a real
robotic system, which consists of two prosthetic hands con-
nected to a dual-arm base. We demonstrate the applicability
of our method on the PSYONIC ability hand [10], by
obtaining the joint values of the Common-Rig through the
generation process in simulation and transferring the values
of the corresponding joints to the real robotic system.

The main contributions of our method are threefold.
Firstly, we present the Common-Rig, an effective kinematic
rig representation that reduces the number of joints represen-
tation and infeasibility of the generated motion. Secondly, to
tackle the inherent one-to-many property of the hand motion
generation task, we utilized a diffusion model, which has
shown its great strengths in handling such problems. Thirdly,
to evaluate the feasibility of the generated motions on a real
prosthetic hand, we visualize our generated motions obtained
from simulation on a real robotic system.

II. PRELIMINARIES

Generative methods have been widely used to make hand
motions from body motions (e.g., Body2Hands [11]). While
GAN-based methods have been mainly used, our proposed
method uses a diffusion-based method which is known to be
easier to train and have better performances. In particular, we
treat our problem as an inpainting problem where we aim to
fill in the missing hand motion from the body-only motion.



A. Body2Hands

Body2Hands [11] adopts a GAN-based structure to gen-
erate hand gestures from upper body movements in a con-
versational setting. The GAN-based model is trained using a
large-scale dataset that contains upper body and hand poses
extracted from in-the-wild internet videos using a monocular
3D pose estimation algorithm. From a sequence of body
poses B = {b}1:L where L refer to the length of the
sequence, the generator model G aims to generate a sequence
of hand poses H = {h}1:L.

H = G(B) (1)

The generator model G of Body2Hands consists of a body
encoder, a UNet-based encoder and a hand decoder. The
body encoder outputs a body embedding from the body
joint rotation input and the UNet-based encoder learns the
dynamics of the body. With the output of the UNet-based
encoder as the input, the hand decoder recovers the hand joint
rotation. The generator model G aims to regress the hand
joint rotation of the original dataset Ĥ using the following
loss term:

LL1(G) = ∥Ĥ − G(B)∥1 (2)

The discriminator model D aims to differentiate the re-
alistic hand movements from the unrealistic ones, in order
to create more natural hand gestures. The discriminator D
maximizes the following adversarial loss, while the generator
G aims to minimize it:

LGAN (G,D) = EH[logD(H)] + EB[logD(1− G(B))] (3)

Overall, the full objective of Body2Hands is as follows:

min
G

max
D

LGAN (G,D) + λLL1(G) (4)

B. Denoising Diffusion Probabilistic Models (DDPM)

Identical to other generative models, DDPM [12] aims
to learn the distribution of the training dataset. A diffusion
process, with a predetermined variance schedule βt, is im-
plemented to transform the original data x0 to an isotropic
Gaussian noise xT ∼ N (0, 1) by injecting noise every step
for T time steps. The forward diffusion process at each step
is defined by :

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtxt−1I) (5)

DDPM is trained to learn the reverse diffusion process,
which predicts the reverse of (5) at each time step t via a
Gaussian distribution with mean µθ and variance Σθ :

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (6)

A distinct property of the forward diffusion process (5)
is that xt at an arbitrary time step t can be sampled using
x0 since the noising step is Gaussian and independent at
each time step. By accumulating the variance schedule as

ᾱt =
∏t

s=1(1 − βs), the sampled xt can be obtained as
follows:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (7)

C. RePaint

The goal of RePaint [13] is to inpaint the missing pixels of
an image when the mask m that denotes the missing pixels
is identified. RePaint leverages an pretrained DDPM [12]
and samples the masked region by conditioning on the
unmasked region during the reverse diffusion process. During
the generation process, when predicting xt−1 from xt, the
unmasked regions are predicted from by sampling using x0

and the masked regions are obtained from going through
a single reverse diffusion process step using the pretrained
model. The mask matrix m has value 1 for the known pixels
and 0 for the missing pixels, whereas ∗ represents pointwise
multiplication.

xunmasked
t−1 ∼ N (

√
ᾱtx0, (1− ᾱt)I) (8)

xmasked
t−1 ∼ N (µθ(xt, t),Σθ(xt, t)) (9)

xt−1 = m ∗ xunmasked
t−1 + (1−m) ∗ xmasked

t−1 (10)

If the equations (8) to (10) are applied directly from time
step T to 0, only the content type of the generated masked
region matches the unmasked region (i.e., furry texture of
the dog is generated when the face of the dog is masked).
In order to harmonize the masked region with the unmasked
region, a resampling strategy, that repeats forward diffusion
processes in between reverse diffusion processes, is applied.

III. PROPOSED METHOD

The main objective of our proposed method is to recover
the full body and hands sequence from the partial body-
only sequence. Fig. 1 shows the overall pipeline of our
generation process. In the ‘Dataset Rigging’ process, the
joint positions of the Common-Rig is matched with the
joint positions of the motion capture skeleton to extract the
motions of the Common-Rig. The rigging process allows
for the consideration of the kinematic priors of the human
motion and reduces the total DoFs required for the motion
representation.

During the ‘Hand Motion Generation’ process, diffusion-
based inpainting, which has shown great strengths in gen-
eralization and being easy to train, is used to fill in the
missing hand motion from the body-only motion. To do so,
the rigged motions is first split into a train set and a test set.
DDPM [12] is used to train a diffusion model on the train set
and RePaint [13], along with the pretrained diffusion model,
is used to generate the hand motions from the body-only
motions of the test set. Finally, a Gaussian filter is applied
to the generated results to ensure smoother transitions.



Fig. 1: The overall pipeline of our proposed method. The ‘Dataset Rigging’ process converts the motion from the motion
capture dataset to the motion of the Common-rig and each arrow indicate a single revolute axis. The ‘Hand Motion
Generation’ process inpaints the missing hand motion of the body-only motion using a diffusion-based inpainting method.

A. Notations

The notations used in this paper are as follows:

• qmocap
1:L ∈ RL×Nm×3: The joint angles sequence of the

motion capture skeleton. L refers to the length of the
sequence, Nm refers to the number of joints of the rig
and each joint is represented using three Euler angles.

• qrig
1:L ∈ RL×Nr×2: The joint angles sequence of the

Common-Rig. L refers to the length of the sequence, Nr

refers to the number of joints of the rig and each joint
value in represented using a trigonomical embedding,
containing of a pair of cosine value and sine value.

• Tmocap
1:L ∈ SE(3)L×Nm : The homogeneous transforma-

tion matrix sequence of the motion capture skeleton. L
refers to the length of the sequence and Nm refers to
the number of joints of the motion capture skeleton.

B. Common Rigging

The pose of a skeleton is usually represented by a com-
bination of a root pose (i.e., root position and orientation)
and the local joint offsets. As the link lengths between
joints are usually preserved, a single skeleton pose can be
represented by NJ rotation matrices where NJ is the number
of joints. However, in the case of the elbow joint or a
single finger joint, the rotation occurs in single axis and does
not require multiple rotational values. A limitation of the
rotation matrix representation is that such constraints cannot
be considered. By utilizing the Common-Rig, the rotations
are represented with a single value per axis, preventing
infeasible human motions and reducing the number of joint
angles for representation.

Using the joint offsets of the motion capture skeleton
and qmocap

1:L , a forward kinematic process is carried out to
obtain the homogeneous transformation matrix sequence
Tmocap

1:L . For the inverse kinematic process, positional targets
of 52 joints of the motion capture skeleton were used. The
joints include 14 joints for the body (Right Pelvis (RP),
Right Knee (RK), Right Ankle (RA), Left Pelvis (LP), Left
Knee (LK), Left Ankle (LA), Spine, Neck, Right Shoulder
(RS), Right Elbow (RE), Right Wrist (RW), Left Shoulder

(LS), Left Elbow (LE), Left Wrist (LW)) and 19 posi-
tional joints for each hand (Thumb: Metacarpophalangeal
joint(MP), Interphalangeal joint (IP), tip / Remaining 4
fingers: MP, Distal Interphalangeal joint (DIP), Proximal
Interphalangeal joint (PIP), tip). The task space position of
the corresponding joints of the Common-Rig was matched to
the aforementioned positional targets to obtain qrig

1:L. Both the
forward kinematics process and inverse kinematics process
are executed in the MuJoCo [14] simulator.

After the joint values of the Common-Rig are ob-
tained, joints within the same finger that accounts for flex-
ion/extension are coupled via a rule-based method. The angle
values of the associated joints are added up and distributed
via a specific ratio shown in Table I. The ratios were selected
in a heuristic manner to imitate the human hand motion.

TABLE I: Ratio for hand coupling

Thumb MP:IP = 1:1
Index MP:DIP:PIP = 1:3:2

Middle MP:DIP:PIP = 1:3:2
Ring MP:DIP:PIP = 1:3:2
Pinky MP:DIP:PIP = 1:3:2

C. Hand Motion Generation

Following the main assumption of Body2Hands [11] that
upper body movements are sufficient for the inference of
the hand movements, we only use the joint values of the
shoulder, elbow, and wrist for the body representation. From
the finger-coupled rigged dataset, only the upper body and
hands joints are retrieved to form the subset qB+H

0 , where
the subscript 0 indicates the diffusion time step. For the
convenience of notation, the variables related to the frame
number and sequence length would be omitted during the
diffusion processes and specified in the Experiments section.

Subsequently, the dataset is split into a train set and a test
set, and a diffusion model is trained on the train set using
DDPM [12] to obtain the mean µθ and variance Σθ. Using
the pretrained diffusion model and the hands-zeroed test set,
hand motion inpainting from the body motion is executed



using RePaint [13]. We particularly selected the diffusion-
based method for our hand generation task due to its ability
to capture more diversity while requiring less parameters to
train compared to GAN-based methods.

Throughout the diffusion time steps, the body joint values
are obtained by sampling from the body-only motion q̂B

0 =
m ∗ qB+H

0 and the hand joint values are obtained through
the pretrained model µθ and Σθ. The mask m with values 1
at the upper body joints and 0 for the hand joints is specified
in advance.

qB
t−1 ∼ N (

√
ᾱtq̂

B
0 , (1− ᾱt)I) (11)

qH
t−1 ∼ N (µθ(q

B+H
t , t),Σθ(q

B+H
t , t)) (12)

qB+H
t−1 = m ∗ qB

t−1 + (1−m) ∗ qH
t−1 (13)

The resampling strategy (Fig. 2) is included to ensure
the coherence of the body and hand motions, whereby the
parameters are as follows: diffusion time steps tT = 1000,
jump length j = 10, resample r = 10. Starting from tT
steps, after every j reverse diffusion steps, j steps of forward
diffusion steps are applied, and the reverse and forward steps
are repeated for r times.

Fig. 2: Resampling time steps during the generation process.
In order to increase the coherence of the generated hand
motion with the original body motion, forward diffusion
steps are alternated in between the reverse diffusion steps.

D. Hand Motion Smoothing

Since RePaint [13] is originally applied on the domain of
images, the dimensions of the generated results are fixed
to that of the train set. As such, during our generation
process, motion sub-sequence of a fixed length of 64 frames
is generated each time. Since the generation of a single sub-
sequence does not affect the generation of its neighboring
sub-sequences, abrupt changes of the joint values may occur
at the boundaries when concatenating the generated results.
In order to ensure smooth transitions between the generated
sub-sequences, a Gaussian filter with a standard deviation of
two is applied to the concatenated sequence.

IV. EXPERIMENTS

A. Dataset Preparation

In this paper, we utilized the NCSOFT Mocap dataset, a
dataset containing both body and hands movements captured
using motion capture devices at 60Hz. Each frame of the
dataset contains XYZ positions and XYZ rotations of Nm =

76 joints, while the Common-Rig is composed of Nr =
70 joints. The body limb lengths of the Common-Rig are
matched with the positional offsets of the NCSOFT Mocap
dataset, and the hand limb lengths are matched with that of
the PSYONIC Ability hand [10], with an additional limb per
finger to match the number of joints in the dataset.

For the joint representation of the hand model, there are a
total of 30 joints (15 joints for each hand: one joint for thumb
opposition, two joints for flexion/extension of the thumb,
three joints for flexion/extension of each of the remaining
four fingers). The default T-pose of the skeletal rig and the
hand model with the corresponding joints used in the inverse
kinematic process is visualized in MuJoCo [14], as shown
in Fig. 3A and 3B. In addition, an example of the dataset
rigging process, starting from the default T-pose to a specific
position of the dataset, is shown in Fig. 3C and 3D.

(a) Body Model (b) Hand Model

(c) Before Rigging (d) After Rigging

Fig. 3: Common-Rig and Common rigging process. (a) The
default T-pose of the Common-Rig and the body joints used
for the inverse kinematics process. (b) The hand model of
the Common-Rig and the hand joints used for the inverse
kinematics process. (c) The Common-Rig pose before the
rigging process. The purple skeleton indicates a specific pose
of the motion capture dataset and the orange rig indicates the
Common-Rig. (d) The Common-Rig pose after the rigging
process.

The NCSOFT Mocap dataset is comprised of 80 motion
sequences, with three motion sequences for each of 27
instruction labels (with the exception of the one instruction
label that has 2 motion sequences). The labels include
explanations of actions such as ‘Point a specific location with
the finger’ and ‘Cover the mouth with the hand’, and an actor
was guided to perform such an action. The same instruction
was given for motion sequences of different assets, and the
descriptions of the assets are shown in Fig. 4.

After applying hand coupling, the total dataset is split



Fig. 4: Train-test split of the dataset and the description of
the three assets. Motions of asset ‘b’ and ‘c’ comprise the
train set and motions of asset ‘a’ comprise the test set.

into a train set and a test set, where motions of assets ‘b’
and ‘c’ are classified as the train set and the body-only
motions of asset ‘a’ are classified as the test set. Following
Body2Hands [11], the motion sequences are divided into
sub-sequences of 64 frames with an overlap of 32 frames
in between two consecutive sub-sequences.

B. Generation Settings

For the generation setting of our method, the motion of the
motion capture skeleton is converted into the motion of the
Common-Rig. The upper body motion is represented by 14
joints (7 joints per arm: 3 shoulder joints, 1 elbow joint, 3
wrist joints), while the hand motion is represented by 30
joints, with each joint angle represented using a trigono-
metrical embedding. Overall, the train set comprises of 407
sub-sequences {qB+H

0 }i:i+64 ∈ R64×44×2 and the test set
comprises of 188 sub-sequences {q̂B

0 }i:i+64 ∈ R64×44×2,
for i = 0, 32, 64, · · · .

After the hand motion have been inpainted on the body
motion sub-sequences in the test set, the generated sub-
sequences of the same sequence are concatenated and
smoothing is applied to the entire sequence. The smoothing
process alleviates the jitters and abrupt changes, increasing
the feasibility of the generated motion to be applied on the
real robotic system.

In order to validate the fidelity of our generated results, we
compare the generated results of our pipeline to two base-
lines: a Supervised Learning (SL) approach, that consists of a
Multi-Layer Perceptron with two hidden layers of dimension
size 256 and Body2Hands (B2H) [11]. For the generation
setting of SL and B2H, the motions of the motion capture
skeleton are used. The upper body motion is represented with
6 joints (shoulder joint, elbow joint, wrist joint for each arm)
and the hand motion is represented by 28 (Thumb: MP joint,
IP joint / Remaining 4 fingers: MP joint, DIP joint, PIP joint)
joints, with each joints having three Euler angle values.

For SL and B2H, only the train set is split into sub-
sequences of 64 frames and the entire body sequence
is used to generate the entire hand sequence at once
for the test set. Overall, the train set comprises of 407
sub-sequences {qmocap}i:i+64 ∈ R64×34×3, for i =
0, 32, 64, · · · . During the inference phase, the upper-body
sequences {bmocap}1:L ∈ RL×6×3 are used to generate the
hand sequences {hmocap}1:L ∈ RL×28×3, where L is the
total length of each sequence.

C. Experimental Results

Two metrics are used to compare the generated results of
the three frameworks: the total distance of the 10 fingertip
positions from the ground truth in task space and the diversity
of the generated motions. The results are summarized in
Table II and Table III. For the comparison of the distance
from the ground truth (GT), the distance is accumulated
throughout each sequence, then divided by the total number
of frames and averaged between the 10 fingers. For the
diversity of the generated results, each motion sequence is
split into K sub-sequences of 64 frames, and the distances of
the fingertip positions from the wrist position {d1, · · · ,dK}
is calculated. The diversity measure of each sequence is
defined as follows:

Diversity =
1

NK

K∑
i=1

K∑
j=i+1

∥di − dj∥ (14)

where NK = K(K+1)
2 .

TABLE II: Distance from the Ground Truth
(Mean ± Standard Deviation)

Ours SL B2H
L2 Distance (mm) 16.15±8.91 41.49±9.30 42.09±8.71

TABLE III: Diversity (Mean ± Standard Deviation)

GT Ours SL B2H
Diversity 2.47±2.75 3.43±2.84 0.25±0.19 0.11±0.09

As shown in Table II, our proposed method outperformed
the two baselines, whereby the average finger distance from
the GT throughout the motion sequence was lesser than half.
Whereas our method could achieve movements of individual
fingers, SL and B2H had a tendency of generating fairly
minimal movements throughout the sequence, due to the
small size of the dataset. As such, a bigger difference in
fingertip positions was induced for the two baselines, while
our method was able to capture more semantic information
about the hand motion.

The shortcomings of SL and B2H producing minimal
movements, resulting in a relatively constant hand motion,
can also be observed in the diversity measure shown in Table
III. Whereas the original GT motion contains diverse motions
where the distance of the fingertips from the wrist varies
in between frames within the same sequence, the distance
values were almost constant for SL and B2H, resulting in a
low diversity measure. Our method produced an even higher
diversity compared to the ground truth, as the diffusion
model created minute jiggly hand motions of each fingers
even when the hand was relatively still. Nevertheless, the
diversity measure was closer to the ground truth compared
to the two baselines, showing that our method was able
to generate diverse hand movements similar to that of the
ground truth.

The largest difference was observed in motion 15a with
the instruction label “Point oneself”. Starting from a hand



pose with open palms, our method was the only one that was
able to bend the middle, ring, and pinky fingers to produce
an index-pointing pose, whereas the two baselines had their
fingers open throughout the motion. The generated results of
motion 15a are visualized in Fig. 5.

(a) Ground Truth (b) Ours

(c) Supervised Learning (d) Body2Hands

Fig. 5: Ground truth and the generated results of motion 15a,
with the instruction label “Point oneself”, for our proposed
method and the two baselines. Amongst the three generated
results, our method was the only one that could produce a
index finger pointing motion.

D. Real Robotic System

The dual-arm system consists of a base with two PA-
PRAS [15] arms each connected to a PSYONIC Ability
hand [10]. In order to validate the generated motions of
our pipeline, the generated joint angles are transferred to the
robotic system to playback the motion. However, PAPRAS
arms have six DoFs while our body representation have seven
DoFs for each arm, resulting in slightly varied transferred
motion. In particular, one out of the three joint angles of
the shoulder is excluded while transferring the joint angles.
The results of the transferred real robot motion and the
corresponding generated poses in simulation are shown in
Fig. 6.

E. Limitations

The biggest limitation of the current study is the lack of
sufficient training motions. NCSOFT Mocap Dataset only
contains 80 sequences of motions, in which we only use
53 motions for training and the remaining 27 motions are
used for the generation process. This deficiency of training

motions greatly limits the full capacity of generative models
that are effective in generating diverse results. Since the
pretrained diffusion model is biased to the train dataset
that contains mainly hand motion at its default position
(all five fingers spread out), the probability of the inpainted
motion including specific hand motions with diverse finger
movements is low. This problem can be mitigated by hav-
ing a larger dataset or introducing conditioning during the
generation process, which is more feasible to implement in
diffusion models compared to other generative models.

V. CONCLUSIONS

In this work, we proposed a method that focuses on gener-
ating hand motions from body motions, using the Common-
Rig and a diffusion-based inpainting method. By applying
hand coupling and smoothing, feasible motions applicable to
prosthetic hands were generated. We compared our generated
results to two baselines and showed our method could
achieve the movements of individual fingers with adequate
diversity. In addition, we visualized the generated motion
in a real robotic system to evaluate the effectiveness of our
method. For future work, we plan on devising a new gen-
eration network to produce hand motions close to real-time
and validating the whole system on upper limb amputees to
evaluate the usefulness of our system.
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